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I . INTRODUCTION

Systems, Science and Software (S 3) has conducted a

feasibility study of the use of pattern recognition techniques to

determine the influence of material properties on crater geometries.

* The computer code entitled ARTHUR (1) was acquired and made

j operational on the SUNIVAC 1100/81. This pattern recognition code

* was then applied to a limited cratering data base taken from the work

of Dillon. (2)

It was the purpose of this study to determine if pattern

recognition techniques contained in the ARTHUR code were useful for

studying cratering systematics of the Dillon data base, and whether

these techniques ought to be applied to a larger and more diverse data

set. The data consisted of information for 196 high explosive (HE)

and 10 nuclear explosive (NE) craters. The test sites are in eight

(8) different media representing a total density range of .96 to 2.7?

g/cc. The HE event yields varied from 1 to 1 million pounds of TNT,

and the NE events range from .085 to 100 KT. Dillon used this data to

produce formulas by regression analysis for crater radius, depth and

volume as functions of scaled DOB and yield. Table 1 summnarizes the

important features of the data. (2)

The general problem in the study of crater systematics

is to determine from a finite set of cratering data the influence of

the measurable features of crateririg event (the material properties of

the site and the type and emplacement of the explosive source) on the

observed geometry of the crater (volume, radius and depth). Having
established these systematic effects in a sufficiently precise and

quantitative form, one can then reliably predict the geometry of some

contemplated crater. The near linear relation between explosive yield

and crater volume has long been recognized. The systematic variation

of cratering efficiency (crater volume per unit energy of the

explosive source) and gross material category is

5 ~ 63ic SiAagKmoT 12UM



TABLE 1

A) HE Craters

Medium Below Ground Surface Burst

Alluvium 69 3
Playa 39 17
Sand 29 3
Basalt 16 5
Shale 8
Tuff 5
Rhyol ite 1
Limestone 1

B) NE Craters

Medium Total

Alluvium 5
Basalt 2
Rhyolite 2
Tuff 1

C) Yield

Kg HE Total KT NE Total

.1 -0 -2 - 10-1 1
1 - 10 24 o1l0 00 2
10 - 102 4 100 1015
102 _ 1 86 101 102 2
lO:. I b  80
1 0, -l 0 20
1& 1066 1
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also well known. For the same energy release and source emplacement,

craters in wet, weakly cohesive materials are much larger than in

hard rock. The effect of water table and geologic layering of the

crater site has also been studied. (3,4 5) The larger cratering
efficiency of high explosive sources (HE) compared to nuclear

explosive sources (NE) has also been established. (3) The object

of this feasibility study was to examine the ability of pattern

recognition techniques, in particular the ARTHUR code, to extend the

known correlations to include finer detail concerning the site

material properties.

The Dillon analysis is a natural benchmark for this study, but

we would like to do better than fit to an arbitrary functional form

which may be a poor representation of reality. Thus one question

addressed in this study is whether ARTHUR possesses any special

features which clarify the data structure, and make possible more

physically realistic fits. A second question is whether the

techniques in ARTHUR are simpler to use or more refined than more

conventional data analysis packages.

The various techniques in ARTHUR and their relevance to the

cratering systematics problem are discussed in Section 11. Section

III presents the results of ARTHUR applied to the Dillon data base.

Section IV reports a more successful application of ARTHUR to data on

the strength of tuff. The conclusion is presented in Section V, and

a general discussion of ARTHUR and pattern recognition is presented

in the Appendix.
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11. ARTHUR TECHNIQUES

The ARTHUR code has twenty-six (26) "verbs", or control words,

which trigger the various data handling or data analysis

techniques. In this section each of these techniques will be

discussed briefly. Of particular interest is whether the technique

is applicable to discrete (category) or continuous properties.

In the cratering analysis problenr the "property" of interest

is a continuous variable such as the crater volume. Thus, only

continuous property techniques will be applicable.

It will be seen that a large majority of the ARTHUR techniques

are restricted to discrete properties. Some of these techniques are

quite sophisticated and have evoked great enthusiasm in the

literature. The continuous property techniques in ARTHUR, on the

other hand are quite familiar. This is both disappointing and

reassuring. It is certainly disappointing that ARTHUR does not

contain some helpful new method, but it is comforting that analysis

in the past has not overlooked any useful tools. A description of

all ARTHUR techniques follows.

(1) BAYES

This is a discrete category classification technique

based on the application of Bayes' rule to individual

features. Thus the probability that a certain pattern belongs

to a particular category is estimated from the observed

distribution of feature values for each category.

The ARTHUR probability that pattern i belongs to category

k, based on feature j is



(probk) (riskk) P [x i,jlXj,k]

Pj Xj,klXi,j : (prob ) (risk ) P [x I X

n n n i,i j,n

where P[xi,jlXj, n' is the probability that feature j of category n
will have a value of x ij , risk k is the risk associated with

misclassifying a pattern and probk is the a priori probability of a

given pattern being a member of category k.

This result applies to single features only, so ARTHUR has

scoring techniques for combining features,

PTOT[Xk xi] = f.(Pj [X j,k{xi.j])

wherecais arbitrary. Another alternative is

PTOTLXk xi] = j In (Pj[X j,k xi,j])

Because BAYES is strictly a classification technique it is not

applicable to the cratering problem. However, BAYES does have a

feature which can be helpful for the continuous case. This is

because the feature variables are continuous, and BAYES uses the

input data base to construct probability distribution functions of

the features. BAYES can be triggered to display this information in

the form of printer plot histograms of the feature frequency

distributions.

(2) CHANGE

This is a data handling routine which contains the

machinery to add or delete features, change or merge

categories, change pattern classifications, and perform quite

general feature transformations. ARTHUR users at S3 have

9



found the procedures required by CHANGE unwieldy and have

opted to modify the ARTHUR data files directly.

(3) CORREL

This routine generates all feature-feature and

feature-property correlation coefficients with confidence

intervals about the correlations, and an estimate of the

probability that the data could have come from uncorrelated

parent populations. This routine is helpful for

characterizing the data, but the confidence interval and

probability of significance must be accepted with caution.

These quantities are derived under the assumption of

normality, and are meaningless if this condition is violated.

(4) DISTANCE

This routine calculates a "distance" matrix whose

elements are the "distances" between each pattern in the

training set and every other pattern. Several arbitrary

measures of distance between two points in a multidimensional

space are used. These definitions of distance preserve the

notion of a small distance between points which have similar

coordinates in multidimensional space, and a lp.r'ge distance

between points with dissimilar coordinates.

These measures of distance lose a great deal of metric

information and are essentially qualitative.

(5) DUMMY

This is a nonfunctional routine intended to allow the

easy insertion of a user written special program.

(6) END

This routine is called to trigger a normal termination of

an ARTHUR run.

10



(7) GRAB

This routine produces new features based on ordering of

weighted data and correcting for correlation between

features. It only partially removes intrafeature

correlation. The resulting features are auto-scaled but not

weighted or decorrelated. One is urged to use this routine

with caution. Since this routine is a rough attempt at what

is done exactly in SELECT we elected not to use it at all.

(8) HEIR

This routine uses interpattern distances as a measure of

similarity and forms a graph called a "dendrogram" which

illustrates the hierarchical cluster structure. This is a

classification tool, and not relevant for the cratering

problem. This routine did not run on our machine, and we

chose to ignore it.

(9) INPUT

This is the routine which reads cards input data and

creates the data file which can be read by the other ARTHUR

routines. This routine also replaces missing data with

average values. The routine permits quite a latitude of input

specifications, but has some rigid requirements that were not

clearly documented. ARTHUR's ease of use begins after

successfully running INPUT. One user found it easier to

create the data file directly.

(10) KARLOV

This technique forms new features from linear

combinations of the old features which produce the largest

spread or variance. The technique is very useful for

11



classification applications but can also be used for feature

reduction. We believe that this technique is inappropriate

for nonlinear data.

(11) KNN

This method applies to category type data and uses the

interpattern distance matrix to find the ten nearest

neighbors. The categories of the nearest neighbors then

predict the category of the test -pattern.

(12) LEAST

This is a least squares multilinear regression

technique. Linear regression analysis is the universal

workhorse for data analysis, and is really the best that

ARTHUR has to offer for continuous properties.

For the cratering data no linear method can be completely

successful until the strong nonlinear DOB dependence is

removed. There is a need for a fundamental understanding of

the DOB dependence for fixed material properties.

(13) MULTI

This technique is described as a multicategory linear

learning machine. The technique applies to category-type data

and involves an iterative construction of hyperplanes which

separate each category from all other patterns.

(14) NEW

This routine is used to initiate a new data set.

12



(15) NLM

"Nonlinear Mapping" uses interpattern distances and

constructs a plane or 3-D projection of the N dimensional

data which preserves interpattern distances and thus cluster

information. This technique is not restricted to category

type data, but its utility for continuous data is not clear.

It is claimed that KARLOV typically produced a better

separation of the data.

(16) PIECE

This is a predictive technique which can be used on

nonlinear data and in a sense, is the most powerful technique

for continuous properties. The major drawback of this

technique is that the predictions are made entirely within the

context of an ARTHUR run, and the approach does not illuminate

the structure of the data. We could not see how to utilize

this technique in the cratering study, but feel that this

technique has many potential applications.

The technique takes each pattern, finds its nearest

neighbors and performs a full least squares multilinear

regression on this set. The user is warned that this

technique is very expensive.

(17) PLANE

This technique is characterized as a binary linear

learning machine. It applies to category type data, and

consists of an iterative construction of hyperplanes which

separate all possible category pairs.

13



(18) PNN

This technique can predict discrete or continuous

properties in the context of an ARTHUR run. Using the

interpattern distance matrix, the nearest neighbors of a

testpattern are found. Then the predicted property is taken

as the arithmetic average of the property values of the

nearest neighbors.

The utility of this technique is similar to PIECE

(19) SCALE

This routine creates a data file in which the data are

either range scaled (minimum 0, maximum 1) or autoscaled (mean

0, variance 1).

This routine also produces a number of useful statistical

characteristics of the data. The print includes for each

feature:

mean

standard deviation

normalized standard deviation

minimum

maximum

range

3rd central moment (m3 )

4th central moment (m4 )
3/2

skewness (m3/Mr2
kurtosis (m4 /m2 

)

These simple characteristics of the data are often quite

informative. The scaled data removes from the data any

numerical bias due to the choice of units.

14



(20) SELECT

This routine produces new features which are linearly

independent and ordered according to a weight. For continuous

property data the weight must be correlation to property.

Like LEAST this technique is quite hopeless in the face

of the nonlinear DOB dependence. In previous analyses the

nonlinear D08 dependence has been partially accounted for by

the use of arbitrary fitting functions, but we feel strongly

that the material property sensitivity will never be

quantitatively understood until the D08 dependence is better

understood.

(21) SINCA

This routine applies to category type data only. It

performs a classification on the basis of pattern similarity

to a principal component model of each category.

(22) STEP

This is a least squares stepwise multilinear regression

technique. It applies to continuous property data and is

similar to LEAST except that the most significant variables

for a fit are found and only variables which make a

significant contribution to the fit are included. The routine

is more expensive but more likely to be successful than

LEAST. STEP and LEAST both provide several measures of the

quality of the fit. Using a reasonable function to remove to

008 dependence, we were not able to produce a high quality

fit. Our commnents on LEAST and SELECT apply here. Unless the

008 dependence can be removed with some precision, material

property sensitivity is masked by the remaining DOB variation.

15



(23) TREE

This routine generates a minimal spanning tree, a cluster

analysis technique. This is a classification technique which
is not applicable to the cratering data.

(24) TUNE

This routine generates all linear quadratic and ratio

combinations of the data. It generates 2n 2 + 2n composite
features from n input features. This is a brute force attempt
to find nonlinear functional relations but of course only
works for these simple nonlinearities. TUNE was used with
little optimism and aside from generating a large mass of

paper was unimpressive.

(25) VARVAR

This is the ARTHUR automatic plotting routine. It
produces plots of feature vs feature and feature vs property.
The routine scales and labels automatically and can plot using
the category as a plot symbol. It also features a row by row
tally of the number of plots and overplots.

We found this routine to be one of ARTHUR's major assets.

(26) WEIGHT

This routine provides measures of importance of each

feature for the description of the property. Of the three
weightings available variance weighting and Fisher weighting
are appropriate for category type data only. The third
weighting option, correlation to property is only appropriate

for continuous data.

16



111. ARTHUR ANALYSIS OF CRATERING DATA

The purpose of this study was to determine if the ARTHUR code

could be used to enhance our understanding of cratering systematics

with particular emphasis on the influence of material properties.

The study was confined to a data base which was compiled and

analyzed by L. A. Dillon. Dillon assumed a general functional form

which would be cast in linear form and obtained parameters by linear

regression analysis. Dillon's approach can be successful if the

data base is complete and if the data are well described by the

fitting function. Choosing an appropriate data base and fitting

function generally requires insight to the data base structure, and

the fitting process is generally laborious.

A question addressed by this study was: Does ARTHUR contain

some capability which would simplify this task In particular we

wish to determine if ARTHUR contains features which simplify the

analysis of the Dillon data base and could be applied to a larger

data base. Our experience with ARTHUR and the Dillon data follow.

The first tests were performed with raw Dillon data. Some

strong relationships were exposed by CORREL and by the plotting

routine VARVAR. High correlation coefficients were produced for the

following pairs of variables.

volume - yield (r - .991)

s wave speed - p wave speed (r = .998)

s wave speed - shear modulus (r = .967)

s wave speed - dry unit weight (r = .925)

p wave speed - shear modulus (r - .972)

p wave speed - dry unit weight (r .923)

shear modulus - dry unit weight (r = .949)

cohesion -unconfined compressive strength (r =.962)

17



Because the data are not normally distributed, these large

correlation coefficients should not be interpreted as implying a 1
linear relation between the variables. Plots are extremely useful

in evaluating the validity of a linear relation. In particular it

was noticed that the volume-yield correlation which is so dear to

our hearts, was unduly biased by a single large yield event. A near
linear relation is expected for all of the above pairs.

The next tests were performed with some derived quantities

which are of more fundamental interest in cratering phenomenology.

The plotting capability became the most useful tool in ARTHUR.

Figure I displays a linear plot of the cratering efficiency

(volumelyield) as a function of in-situ density. In this plot, the

different materials have been identified by material category. The

convention used is:

1:Alluvium

2:Basalt

3:Limestone

4:Playa

5:Rhyolite

6:Sand

7:Shale

8:Tuff

In this plot, anytime a new point should be superimposed on a

previously plotted point, the over print is not executed. Rather,

the rightmost two columns contain summary information in the form of

"PLOT": the number of points plotted on the line, and "NOT": the

number of points not plotted. Thus, the plot may not give an

accurate picture of the actual point density, but the "NOT" column

does indicate what to look for to complete the picture.

Figure I illustrates the departure of the dependence of volume

vs. yield relation from linearity. Clearly the cratering efficiency

is not a constant for a given material and cannot be explained by

in-situ density variations alone. In fact, for a given material the
18
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variation in cratering efficiency for a given in-situ density is

greater than the variation for a given material as a function of

in-situ density (see alluvium, for example).

Figure 2 is a printer plot of cratering efficiency as a

function of degree saturation. The degree of saturation is derived

quantity which can be expressed as:

where o = in-situ density

Od  = dry density of a sample
0 g = grain density

w  = density of water

The correlation with saturation (S) for a given material is

no better than that with in-situ density. This is understood when

one considers Figure 3, which shows the variation of the degree of

saturation as a function of in-situ density. The functional form

suggests a linear dependence, and the plot reveals a nearly linear

dependence within soil types. (Note that at least one value of S is

anomalously large. In principle, S must be less than one.

Violation of this condition is due to errors in the data.) ARTHUR

automatically produced many plots of this type.

The large scatter in plots of cratering efficiency vs.

material properties is explained when one considers the dependence

on depth of burst. Figure 4 displays the cratering efficiency as a

function of scaled depth of burst (depth of burst/volume1 /3). As

expected a large cratering efficiency for some optimum value of the

scaled depth of burst is shown with decreasing efficiency for

greater or lesser depths of burst. The plot is poorly resolved so

Figure 5 shows a transformed version of the same plot. Here the log

of the cratering efficiency is plotted vs. scaled depth of burst.

It is clear from this figure that the cratering efficiency increases

rapidly to some optimum depth and then decreases slowly for deeper

bursts. Systematic differences for the different material

categories are also apparent. 20
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Further reduction of the data depends on our ability to
remove the depth of burst dependence so that the depth of burst
variation does not overwhelm the dependence on material properties.

The ARTHUR code cannot do this, and therefore this task remains the

job of the researcher. Such an analysis was beyond the scope of

this study, and only a modest effort was made.

Figure 6 is a high resolution plot of cratering efficiency

vs. scaled depth of burst for one material - alluvium. The data are

clearly not Gaussian. The rise seems exponential, and the tail

falls as an inverse square. The dotted line represents an

analytical model used to describe the data. The rise is hyperbolic

function, and the decay is an inverse square. This form was used

for a numerical exercise, and is not intended to be a general

representation of cratering data.

This function was then used to scale the cratering efficiency

in an ARTHUR calculation to see if the scaled (or normalized)

cratering efficiency has a more systematic dependence on material

properties. The plotting capability of the code was utilized

again. The results were negative. This was not surprising because

the original plots suggested that the optimum depth of burst was

different for different materials and this was not accounted for by

the fitting function.

25
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Discussion

3 The task of establishing the dependence of cratering on

material properties is not eased by the ARTHUR code.

A major impediment to this analysis is the complication of

the severly nonlinear depth of burst effect. While the variation

due to depth of burst is much greater than the variation due to

material properties, the depth of burst effect is sufficiently

masked by material property variations that there is little hope of

separating depth of burst effects and material property effects in a

purely empirical fashion.

Another factor which makes it difficult to discriminate the

effect of material properties is due to errors inherent in the

material property data. One source of error is sampling error, but

there is the additional problem that because of sampling bias,

laboratory samples may not be representative of material in the

large. In the case of strength there is the possibility of size

effects, and the result of a laboratory measurement is certainly not

representative material "in the large". Site charaterization is

further complicated by gross variations in material properties such

as layering. In this case the crater geometry does not depend on

any average of the material properties, but will depend on the

details of the material property variations. This last case is an

instance of an uncertainty due to an important site parameter which

is not present in the data base.

It is concluded that such uncertain data complicated by an

unknown nonlinear depth of burst variation, presents a problem for

which ARTHUR is of no particular help.
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IV. ARTHUR AND THE STRENGTH OF TUFF

This section addresses an example where ARTHUR was used in a

study which led to a potentially important interpretation of noisy

and nonlinear data. This study was an outgrowth of work to

determine the influence of material properties on the dynamics of a

contained nuclear explosion. Various parameter studies have led to

the conclusion that strength is the material property which most

profoundly affects the final cavity conifiguration.

Material strength is a property which is difficult to

characterize. In the DNA undergrond test program the major method

of characterizing material strength is to specify the response of a

sample in a uniaxial strain test. This test is relatively difficult

and generally results in large sample to sample variations.

Thus, there is a strong motivation to discover some

systematic dependence of strength on other, more easily measured,

material properties. This question was addressed recently by R.

Duff~6  at S.The strength parameter examined by Duff was the

stress difference at 4 Kbar on uniaxial strain for 471 samples of

tuff taken from various tunnel regions of area 12 at the Nevada Test

Site. This strength parameter is indicative of the maximum shear

stress of the tuff in a fully saturated state.

Duff attempted to find correlations between this strength

parameter and other material properties using a stepwise linear

regression code developed at the UCLA medical school called BMDO2R.

This code has a feature like TUNE in ARTHUR, and produced a fit for

which the dominant independent variable was V2 /0where Vis
VsI#

the transverse sound speed and 0 is the porosity. However, even a

fit which retained 33 compound independent variables was so poor

that Duff concluded that material strength could not be reliably

estimated on the basis of other conventionally determined properties.
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When ARTHUR became available at S3 Duff requested that the
code be applied to the NTS strength data base. A straight forward
application of the ARTHUR code basically confirmed Duff's earlier

conclusion.

On the basis of this experience, it could not be concluded
that ARTHUR was particularly better or worse than the other data

analysis package. However, during the ARTHUR exercise some insight

was gained which suggests that there may indeed be a useful

correlation between strength and other material properties. This
result is discussed in the remainder of this section.

In the ARTHUR analysis, the code was fully exercised. Plots,
sunmary statistics, and multivariable fits were produced. The plots
were best described as shotgun patterns, but there were some rough

trends which seemed compatable with the correlation coefficients

equal to -0.492 and 0.608 for strength versus porosity and strength

versus shear wave speed. These are consistent with Duff's finding

that the most significant compound variable wsV2/.Hwvr
the fit correlation was poor, and the remaining variance was not

substantially smaller than the overall variance of the strength
data. It was on this basis that Duff concluded that the strength of

tuff could not be reliably estimated on the basis of other material

properties.

When the ARTHUR study was undertaken it was observed that
many strength measurements were necessary to characterize specific

sites due to the large test to test variations. It became clear
that at a specific site, the measured strength had a statistical

distribution with a large variance, and that the goal was to predict
not the outcome of an individual test, but the expected average

value of the tests.
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It was thus conjectured that the strength indeed had a

significant dependence on V5s or 0 which was masked by a large

inherent variability. In fact strong dependences of strength on

shear wave speed or porosity have been observed for the materials.

To examine this conjecture, it was decided to focus on the

dependence of strength on porosity. The data were partitioned into

bins containing porosity increments of -0.02. The total range of

porosities was -0.25 to -0.5, and a typical bin contained about

forty samples. Grouping into bins was performed by sorting the

ARTHUR data file, and ARTHUR runs on each of the bins produced

statistical summ~aries which included the means and standard

deviations of the strength in each bin.

The means generally decreased with increasing porosity and

had a range of 23 to 75 MPa. The coefficient of variation had a

range of .44 to .58. Thus the relative variation is quite uniform.

An estimate of the relative error of the mean can be formed by

dividing the coefficient of variation by the square root of the bin

sample size. The dependence of the mean strength on porosity is
shown in Figure 7. Also indicated on this figure are the probable

errors of the mean strength.

The figure clearly indicates a significant dependence of

strength on porosity. The precise functional form is not known, but

the data are consistent with an exponential law.

This picture must be considered tentative. The correlation

between strength and porosity is only useful if the remaining

variance is random, and not due to uncontrolled variables. Further

work should address this question by examining the coefficient of

variation of the strength at specific sites.
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Figure 7. Mean strength versus porosity.
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V. CONCLUSION

The purpose of this study was to determine if the ARTHUR code

could be used to enhance our understanding of cratering systematics

with particular emphasis on the influence of material properties.

The study was confined to a data base which was compiled and

analyzed by L. A. Dillon. Dillon assumed a general functional form

which could be cast in linear form and ebtained parameters by linear

regression analysis. Dillon's work represents a thoughtful and

laborious effort, but the accuracy of the fit is limited by the

choice of the fitting function.

The analysis could be improved if a more realistic fitting

function could be found but th is a difficult task because of the

complexity of the data.

A question addressed in our study was: does ARTHUR contain

some capability which would simplify this task Also we ask: does

ARTHUR possess any data analysis capability which is superior to the

techniques employed by Dillon

It was determined that ARTHUR possessed no special ability to

clarify the structure of multimensional nonlinear data. ARTHUR did

contain versions of standard techniques which were quite comparable

to those found in more conventional data analysis packages.

For continuous properties, quantitative techniques in the

ARTHUR repertoire are limited to variations of conventional linear

regression analysis, the same tool used by Dillon. Linear data may

be analyzed by conventional (multidimensional linear) least squares

analysis (LEAST), or stepwise linear regression (STEP). ARTHUR has

a limited capability with non-linear data. A fruitless approach

made use of TUNE which automatically forms a new feature set

consisting of simple nonlinear transformations of the original

32



data. Analysis of the new feature set can only reveal simple

nonlinear relationships. More complex nonlinear relationships can

be analyzed only if specific linearizing transformations can be

imposed by the user. This is the same problem that confronted

Dillon.

The final quantitiative method which is available for

nonlinear data is called piecewise linear regression (PIECE). With

this technique, the unknown property value for some set of features

is predicted by performing a stepwise linear regression for a subset

of the data which lie close to the unknown point in feature space

and for which the corresponding property values are known. This

method uses the data to automatically predict some unknown property,

but does not contribute to understanding the data.

These techniques exhaust ARTHUR's predictive capability with

continuous data. Any data analysis technique adopted by pattern

recognition may be equally (and perhaps primarily) claimed by

conventional statistics.

Other capabilities available in ARTHUR are also not unique to

pattern recognition. Statistical summvary information is generated

by SCALE: mean, standard deviation, minimum,, maximum, range, third

and fourth moments, skewness and kurtosis. Correlation coefficients

between each pair of variables are generated by CORREL. Scaled

plots of each variable pair are generated by VARVAR. Histogram

plots are produced BAYES.

The advantage of ARTHUR is its utility. Any number of the

techniques in ARTHUR can be invoked for a single data base (or

transformation of the data base) in a single run. Any routine which

modifies the data has a dedicated output file which is distinct from

the input file. Most routines have many run options, but will run

with reasonable default values if all options are omitted.

33



Therefore, once the data has been input, the code can be exercised

with remarkable simplicity. The following control cards will

trigger the corresponding subroutines in their default modes:

BAYESS

CORR EL$

LEAST$

STEPS

VAR VAR $
SCALE $

Running with other options is only slightly more complicated.

Although the ARTHUR package did not contain any new tools

which could be applied to the cratering systematics problem, we were

favorably impressed with the code. Documentation for input and

output were thorough, and the individual techniques were well

referenced.

The code had a few shortcomings. Several minor bugs were

found. One routine (HIER) which was not relevant for this study had

serious problems which we chose not to pursue. While the output was

abundant and informative, it was not exhaustive. For example,

partial correlation coefficients are not displayed by the linear

regression routines. The stepwise linear regression routine (STEP)

had a peculiar way of deciding whether or not a variable was

significant. None of these shortcomings are really serious.

It is clear that the discrete property capability of the

ARTHUR code is much more powerful than the methods available for

continuous properties.

The continuous property capabilities of the ARTHUR code

consist of techniques that are already available to any scientist.

We must conclude that ARTHUR possesses no special capability which

could contribute to our understanding of cratering systematics.
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APPENDIX

PATTERN RECOGNITION AND ARTHUR

Pattern recognition has been defined as a computer oriented

branch of applied mathematics concerned with the detection of

meaningful regularities in complex and noisy data. This field is

still very young and is a logical outgrowth of automation of visual

recognition tasks. The visual recognition, military photo analysis,

blood cell and chromosome analysis, flaw detection, fingerprint

analysis, bubble chamber event analysis, and analysis of

electrocardiograms and electroencephalograms. The commnon problem in

each of these applications is the classification of some object.

Contemporary pattern recognition was born when general methods were

developed which could be used in all such applications.

It should be noted that pattern recognition has a background

that has been variously described as colorful and controversial.

Orginally the subject included any attempt at modeling phenomena

which somehow mimicked man. This included research in the areas of

artifical intelligence, interactive graphic computers, computer

aided design, psychological and biological pattern recognition,
linguistic and structural pattern recognition, etc. (7)

Pattern recognition has emerged as a general multidisciplinary

approach to data analysis with major contributions from statistics,

comhmunication theory, switching theory, control theory, operations

research, biology, psychology, linguistics and computer science. It

is classified as a subset of artifical intelligence. (8)

It must be pointed out that pattern recognition is not

essentially different than other uses of large computers. "Pattern

recognition should not be viewed as an attempt to remove the

scientist from the data analysis part of experimentation. Nor,
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should it be thought of as a black box within the computer that

gives a machine a high degree of intelligence. Rather, it is a

combination of tools that can efficiently handle the tedious task of

data reduction."(9)

Nevertheless, pattern recognition carries an aura of

itelligence which many authors explicitly deny. "Pattern

recognito is a form of artificial intelligence which is capable of

aiding the scientist in making a systematic analysis of

investigator who can supply intuition and intelligence, and the

compterwhich, by utilizing pattern recognition techniques, can

reconizerelationships between data in a multidimensional

The image of intelligence is perpetuated in part by

anthropomorphic terminology which is inappropriate to mathematical

subject. An encyclopedia article on pattern recognition begins with

an apology. "Through an abuse of language, words such as
'recognition,' and 'learning', which refer to fairly complex

capabilities of humans and animals, have been applied to machine

systems that implement classification and estimation algorithms.

Unfortunately, this abuse of language is here to stay, and so we

also will speak of 'machine recognition.'

In summary, it does not seem unreasonable to define pattern

recognition as a collection of computer techniques for the analysis

of abstract data.

The pattern recognition techniques used in this study are

restricted to those contained in the computer package called

ARTHUR. The authors of this code subscribe to the following

statement of the problem addressed by pattern recognition. "Can an

obscure property of a collection of objects be detected and/or pred-

icted using indirect measurements, made on the objects, that are
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known to be related to the property via some unknown relation-

hip?"(2 Some of the terms in this statement are used a

specialized sense. A pattern recognition glossary is presented in

Table 2.(1 A list of the main variables in the code is given in

Table 3.(1

The generality of the approach is clear. Objects are char-

acterized by a set of feature values and a property or category

value. These feature values and property/category values are the

basic input for the ARTHUR code. Once entered, a large variety of

analysis methods can be invoked with impressive ease.

A summary of the methods available in ARTHUR is presented in

Table 4. (10) These methods are well documented in texts such as

Andrews ()and Duda and Hart. (8 )

The ARTHUR code has been successful in classification of
arholgca amls(13) (14)

arceoogca smpes and bond papers using trace

element concentration as features, classification of lunar rocks by

chemical composition, (1)and classification of atomic
spectra.(0 It has also been applied to material origin (6

using elemental composition, material quality (17) using chemical

and physical measurements, chemical structure (81)using

spectral measurements, and chemical or biological aciiy(20,21)

using molecular structure and chemical composition.

Some of these investigations are essentially feasibility

studies, and many involve ARTHUR principals. These studies

typically exploit the discrete property capability of the code, and

the results have been impressive. While no extensive literature

search has been attempted, we have found no corresponding reports

for the continuous property capability of the code. Our own

experience with this part of the ARTHUR package is reported in the

body of this report.

37



Table 2. A Brief Definition of Terms

The following definitions are fairly standard in the
pattern recognition literature and are used in ARTHUR.

Category: A group of patterns having the same property
(generally, the value of the category is arbitrarily
assigned and is not a function of the measurements).
A dependent variable.

Feature: A measurement which is transformed to enhance
(hopefully) its utility in describing the data. An
independent variable.

Measurement: Any variable which can be obtained for each object.

Object: A sample (or collection of samples considered as one)
for which chemical/physical/biological/etc.
measurements can be obtained.

Pattern: The collection of measurements/features associated
with one object. A point or vector in feature space.

Evaluation A subset of the data not having property/categories
set: assigned.

Property: An assigned or measured characteristic of an object
(generally, the value of the property is assumed to 'e
a continuous function of the measurements/features).
A dependent variable.

Supervised learning (pattern recognition):
Development ofcl-assification rules using patterns
having known property/categories.

Test set: A subset of the data having known property/categories
used to test the predictive ability of the
classification rules developed on the training set
data.

Training A subset of the data set having known
set: property/categories, used to develop classification

rules in supervised learining methods.

Unsupervised learning (cluster analysis; pattern recognition):
Assignment of-"-natu--a groupings to the data without
using property/category information.
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Table 3. A Brief Definition of Symbols

NCAT: The number of categories; if continuous property data,
NCAT=I.

NPAT: The number of patterns in the training set.

NTEST: The number of patterns in the test/evaluation set.

NVAR: The number of measurements/features.

xi: The vector of feature values for pattern i.

xij: Feature j of pattern i.

Pi: The property/category of pattern i.
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